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The paper presents a numerical procedure to discretize the differential equation arising in the vector Jiles-Atherton hysteresis
model. In addition to the numerical procedure, the effect of parameters on the stability of the solution is also presented. In essence, the
parameter identification through optimization have been discussed in detail that literally covers the Jiles-Atherton models response
to the uni-directional alternating magnetic flux density input. The non-physical b−h loop and convergence problems are faced when
using vector Jiles-Atherton model in the magnetic field simulations. To account for the convergence issues, an adaptive time step
control is implemented that fosters the simulation and enhances the convergence.
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I. INTRODUCTION

THE phenomenological Jiles-Atherton (J-A) hysteresis
model is one of the most extensively studied and used

hysteresis model beside the mathematical Preisach model [1].
The J-A model possess some advantages over the Preisach
model in terms of simplicity and computational robustness [2],
[3]. In addition, the recent studies shows that the J-A model
is well adapted in applications involving 2-D magnetic field
problems [4]. Nevertheless, the latent complexities involved
in the parameter identification and convergence issues in 2-D
electromagnetic field problems merely justify the simplicity
of the phenomenological hysteresis model. The numerical
procedure used in the discretization of the vector J-A model
differential equation can immediately reveal the sensitivity of
the J-A model in response to the variation of the parameters.
In addition, the convergence issue within the material model
is severe enough to hinder its successful application in the
numerical analysis of electromagnetic field. This paper aims
to outline all the possible glitch in the vector J-A model,
and address such problems with relevant rectification where
necessary.

II. METHODOLOGY

A. Vector Jiles-Atherton Model

Bergqvist [5] in 1996 introduced the vector formulation of
the original scalar J-A model. Taking the magnetic flux density
b as the input variable, the change in magnetization m is given
by the differential equation [6]:
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where χf = k−1 · (man −m) is an auxiliary vector quantity,
tensors k, α, and c are the model parameters, ξ is the differen-
tial anhysteretic susceptibility, I represents the unit tensor, ν0
is the vacuum reluctivity, and man represents the anhysteretic
magnetization vector. The anhysteretic magnetization vector is
a function of the effective field, he = h+α·m, and is collinear
with it [6]:
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The classical Langevin and Brillouin functions have been
commonly used to represent the anhysteretic magnetization
curve given by (3), however various other sigmoid functions
have been equally suitable in representing the lossless curve
[7], [8]. The expressions for the elements of (4) are referred to
[6]. Using (1)-(2) the differential reluctivity can be expressed
as:
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Equation (5) can be re-written as:

(6)
dh

db
= f (hn+1, hn, bn+1, hn) ,

where n and n + 1 denote the current and next time step values.
The discretization of (4) can be done using implicit midpoint

method, backward Euler method or other linear multi-step
methods. Often, the fourth order Runge-Kutta method have
been used in solving (1)-(2). The underlying assumption that
permits the use of the explicit Runge-Kutta method in solving
(4) is to consider no irreversible effect taking place in the initial



magnetization curve, especially near the origin. In essence, (2)
follows at the startup of the simulation (i.e., dh ≥ 0). Albeit,
the condition (man − mirr) · dhe in the inverse model does
not allow the use of explicit numerical discretization scheme.
The presence of parameter α in he = h + α · m makes the
hysteresis model implicit [5]. Equation (6) is solved using (1)-
(2), and hence the next time step value of the magnetic field
can be computed as:

(7)hn+1 = hn +
dh

db
· (bn+1 − bn) .

B. Parameter Identification and Essential criteria

Several optimization schemes are used to obtain the J-
A model parameters. Derivative free methods like genetic
algorithm, particle-swarm method, simulated annealing, pattern
search method, and others have become very popular in opti-
mizing the J-A model parameters [9],[10]. During parameter
optimization, the cost function is evaluated at randomly varied
parameter values. At certain combination of the parameters,
the simulation result would give non-physical b− h loop. The
negative value of the differential susceptibility is non-physical
for a ferromagnetic material (see Fig. 1). Hence, in-order to
avoid non-physical b−h characteristic, the following essential
criteria should be included in the optimization algorithm [11]:

(i)
Msα

3a
< 1,

(ii) 0 < c < 1 and k > 0.

C. Convergence Problem

Although, the implicit method is preferred, the non-linear
iterations do not converge at all. In essence, a small db value
must be used, however, to speed up the simulation time the
authors prefer to use an adaptive time step control in the
algorithm.

III. RESULTS AND DISCUSSION

The simulation result shown in Fig. 1 and Fig. 2 clearly
emphasize the importance of essential criteria. Both the results
in Fig. 1 and Fig. 2 suffer from the convergence problem
due to the large and fixed db. In the full paper, the result
of using an adaptive time-step control and the effect of such
adaptive control in solving 2-D magnetic field problem using
finite element method will be presented.
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Fig. 1. Essential criteria violated.
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Fig. 2. Essential criteria fulfilled.

[5] A. J. Bergqvist, “A simple vector generalization of the Jiles-Atherton
model of hysteresis,” IEEE Transactions on Magnetics, vol. 32, no. 5,
pp. 4213-4215, 1996.

[6] J. V. Leite, N. Sadowski, P. Kuo-Peng, N. J. Batistela, and J. P. A. Bastos,
“Inverse Jiles-Atherton vector hysteresis model,” IEEE Transactions on
Magnetics, vol. 40, no. 4, pp. 1769-1775, 2004.

[7] P. Rasilo, A. A. E. Abdallh, A. Belahcen, A. Arkkio and L. Dupré,
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